- 目前 ,供 igbt 使用的驱动电路形式多种多样 ,各自的功能也不尽相同。从综合的观点看 ,还没有一种十全十美的电路。 从电路隔离方式看,igbt驱动器可分成两大类,一类采用光电耦合器,另一类采用脉冲变压器,两者均可实现信号的传输及电路的隔离。 下面以日本富士公司的 exb841 驱动器为例 ,简单说明光电耦合驱动器的工作原理 。图中 + 20v驱动电源通过r1 和v5 分为+15v及 + 5v两部分。当来自控制电路的控制脉冲进入光电耦合器v1 后 ,放大器使v3 导通 ,gbt栅极即得到一个 +15v 驱动信号并导通。当控制信号消失后 ,v4 导通 ,此时 igbt 即得到一个 - 5v 的栅源电压并截止。
- 驱动器内的保护电路通过 v6 检测到这一状态后 ,一方面在 10μs 内逐步降低栅压 ,使 igbt进入软关断状态 ,另一方面通过光耦 v2 向控制电路发出过流信号。 光电耦合驱动器的最大特点是双侧都是有源的 ,由它提供的正向脉冲及负向封锁脉冲的宽度可以不受限制 ,而且可以较容易地通过检测 igbt通态集电极电压实现各种情况下的过流及短路保护 ,并对外送出过流信号。目前国内外都趋向于把这种驱动器做成厚膜电路的形式 ,因此具有使用较方便 ,一致性及稳定性较好的优点。其不足之处是需要较多的工作电源。 例如 ,全桥式开关电源一般需要四个工作电源 ,从而增加了电路的复杂性。驱动器中的光电耦合器尽管速度较高 ,但对脉冲信号仍会有 1μs左右的滞后时间 ,不适应某些要求较高的场合。 光电耦合器的输入输出间耐压一般为交流2500v ,这对某些场合是不够的。
- 它是在外加电压作用下可以产生高频振荡的晶体管。产生高频振荡的工作原理是栾的:利用雪崩击穿对晶体注入载流子,因载流子渡越晶片需要一定的时间,所以其电流滞后于电压,出现延迟时间,若适当地控制渡越时间,那么,在电流和电压关系上就会出现负阻效应,从而产生高频振荡。它常被应用于微波领域的振荡电路中。它是以隧道效应电流为主要电流分量的晶体二极管。其基底材料是砷化镓和锗。其P型区的N型区是高掺杂的(即高浓度杂质的)。隧道电流由这些简并态半导体的量子力学效应所产生。发生隧道效应具备如下三个条件:①费米能级位于导带和满带内;②空间电荷层宽度必须很窄(0.01微米以下);简并半导体P型区和N型区中的空穴和电子在同一能级上有交叠的可能性。
- 为了满足量产上的需求,半导体的电性必须是可预测并且稳定的,因此包括掺杂物的纯度以及半导体晶格结构的品质都必须严格要求。常见的品质问题包括晶格的错位(dislocation)、双晶面(twins),或是堆栈错误(stacking fault)都会影响半导体材料的特性。对于一个半导体元件而言,材料晶格的缺陷通常是影响元件性能的主因。目前用来成长高纯度单晶半导体材料最常见的方法称为裘可拉斯基制程(Czochralski process)。这种制程将一个单晶的晶种(seed)放入溶解的同材质液体中,再以旋转的方式缓缓向上拉起。在晶种被拉起时,溶质将会沿着固体和液体的接口固化,而旋转则可让溶质的温度均匀。