SKET 400

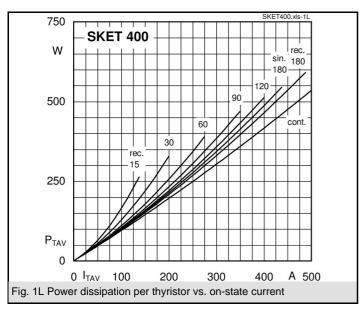
SEMIPACK[®] 4

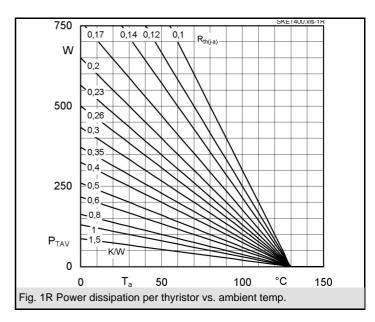
Thyristor Modules

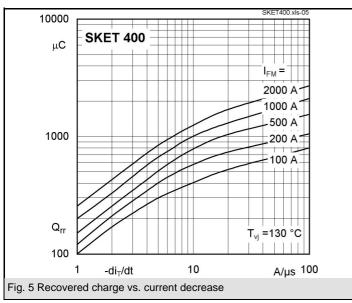
SKET 400

Features

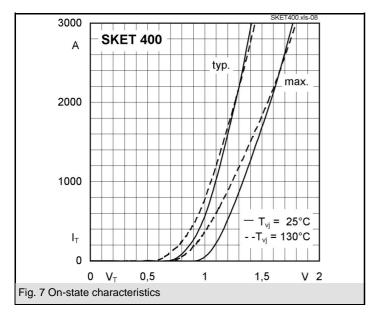
- Heat transfer through aluminium nitride ceramic isolated metal baseplate
- Precious metal pressure contacts for high reliability
- Thyristor with amplifying gate
- UL recognized, file no. E 63 532

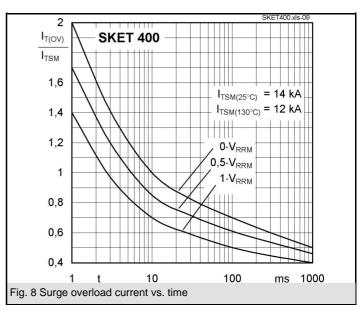

Typical Applications

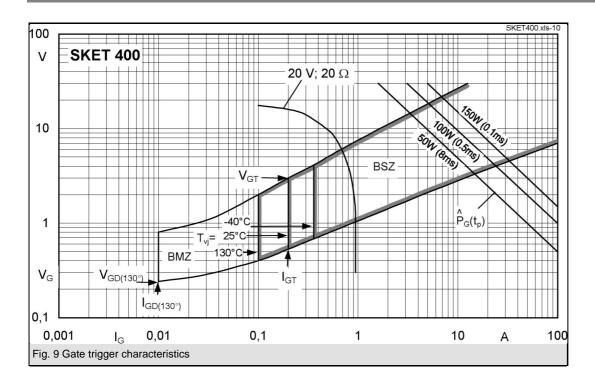

- DC motor control (e. g. for machine tools)
- Temperature control (e. g. for ovens, chemical processes)
- Professional light dimming (studios, theaters)
- 1) See the assembly instructions
- 2) The screws must be lubricated

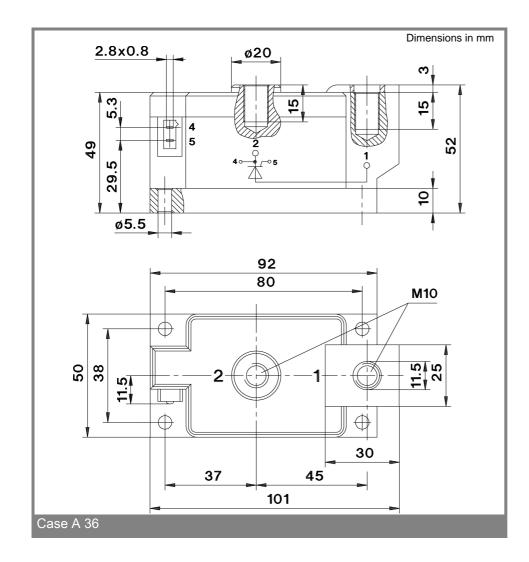

V _{RSM}	V_{RRM}, V_{DRM}	I _{TRMS} = 700 A (maximum value for continuous operation)	
V	V	I _{TAV} = 400 A (sin. 180; T _c = 84 °C)	
900	800	SKET 400/08D	
1300	1200	SKET 400/12E	
1500	1400	SKET 400/14E	
1700	1600	SKET 400/16E	
1900	1800	SKET 400/18E	

Symbol	Conditions	Values	Units
I _{TAV}	sin. 180; T _c = 85 (100) °C	392 (280)	Α
I _D	P16/300F; T _a = 35 °C; B2 / B6	700 / 880	Α
I _{RMS}	P16/400F; T _a = 35 °C; W1 / W3	905 / 3 * 720	Α
I _{TSM}	T _{vi} = 25 °C; 10 ms	14000	Α
	T _{vj} = 130 °C; 10 ms	12000	Α
i²t	T _{vj} = 25 °C; 8,3 10 ms	980000	A²s
	T _{vj} = 130 °C; 8,3 10 ms	720000	A²s
V_{T}	$T_{vj} = 25 ^{\circ}C; I_{T} = 2400 A$	max. 1,7	V
$V_{T(TO)}$	$T_{vj}^{\ \ \ } = 130\ ^{\circ}C$	0,92	V
r _T	$T_{vj} = 130 ^{\circ}\text{C}$	0,3	mΩ
$I_{DD}; I_{RD}$	T_{vj} = 130 °C; V_{RD} = V_{RRM} ; V_{DD} = V_{DRM}	max. 80	mA
t_{gd}	$T_{vj} = 25 ^{\circ}\text{C}; I_{G} = 1 \text{A}; di_{G}/dt = 1 \text{A/}\mu\text{s}$	1	μs
t _{gr}	$V_{D} = 0.67 * V_{DRM}$	2	μs
(di/dt) _{cr}	$T_{v_i} = 130 ^{\circ}C$	max. 125	A/µs
(dv/dt) _{cr}	T _{vj} = 130 °C ; SKETD / SKETE	max. 500 / 1000	V/µs
t _q	$T_{vj} = 130 ^{\circ}\text{C}$	150 200	μs
I _H	$T_{vj} = 25 ^{\circ}\text{C}$; typ. / max.	150 / 500	mA
IL	T_{vj} = 25 °C; R_G = 33 Ω ; typ. / max.	500 / 2000	mA
V_{GT}	$T_{vj} = 25 ^{\circ}C; d.c.$	min. 3	V
I _{GT}	$T_{vj}^{\ \ \ } = 25 ^{\circ}C; d.c.$	min. 200	mA
V_{GD}	$T_{vj} = 130 ^{\circ}\text{C}; \text{d.c.}$	max. 0,25	V
I_{GD}	T_{vj} = 130 °C; d.c.	max. 10	mA
$R_{th(j-c)}$	cont.	0,09	K/W
R _{th(j-c)}	sin. 180	0,095	K/W
R _{th(j-c)}	rec. 120	0,11	K/W
R _{th(c-s)}		0,02	K/W
T _{vj}		- 40 + 130	°C
T _{stg}		- 40 + 130	°C
V _{isol}	a. c. 50 Hz; r.m.s.; 1s / 1 min.	3600 / 3000	V~
M _s	to heatsink	5 ± 15 % ¹⁾	Nm
M _t	to terminal	17 ± 15 % ²⁾	Nm
а		5 * 9,81	m/s²
m	approx.	940	g
Case		A 36	









This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.