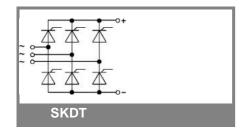
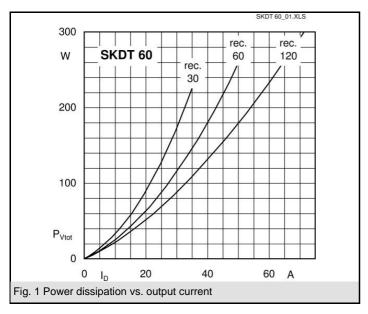


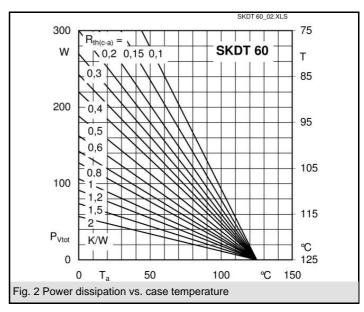
Controllable Bridge Rectifiers

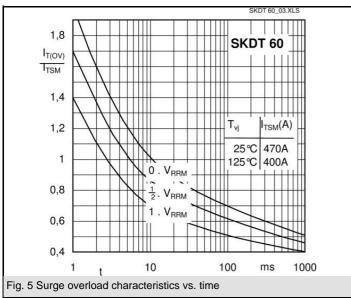
SKDT 60

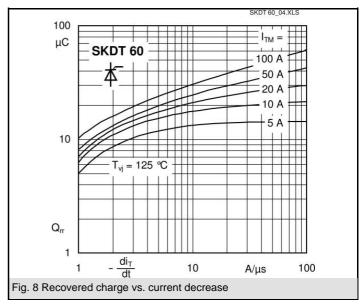
Features

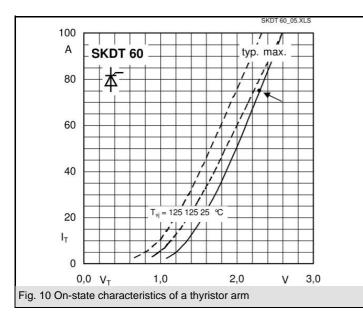

- Fully controlled three phase bridge rectifier
- Robust plastic case with screw terminals
- Large, isolated base plate
- Blocking voltage to 1400V
- High surge currents
- · Easy chassis mounting
- UL recognized, file no. E 63 532

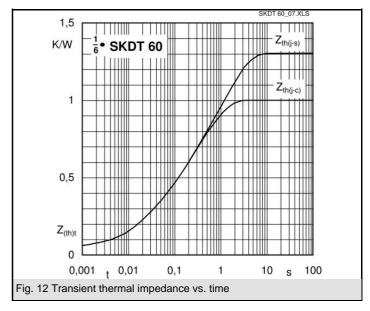

Typical Applications

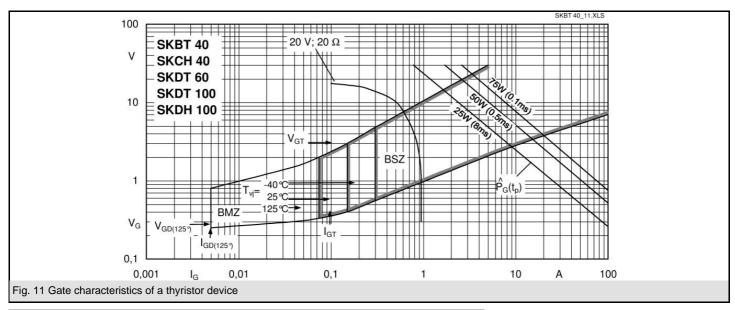

- For DC drives with a fixed direction of rotation
- For reversing DC drives
- Controlled field rectifiers for DC motors
- Controlled battery charger rectifiers
- 1) Painted metal shield of minimum 250 x $250 \times 1 \text{ mm}$: $R_{th(c-a)} = 1.8 \text{ K/W}$

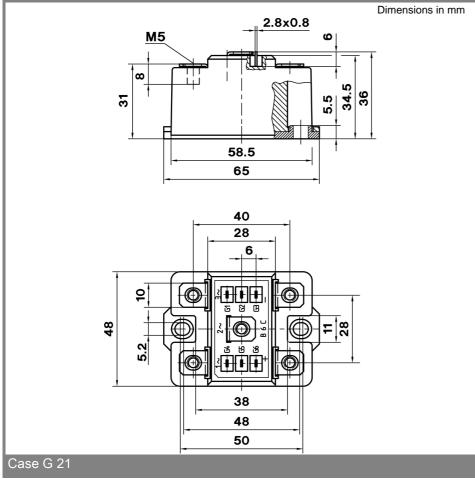

V _{RRM} , V _{DRM}	I _D = 60 A (full conduction)
V	(T _c = 86 °C)
400	SKDT 60/04
800	SKDT 60/08
1200	SKDT 60/12
1400	SKDT 60/14
	V 400 800 1200


Symbol	Conditions	Values	Units
I _D	T _c = 85 °C	61	Α
	T _a = 45 °C; chassis ¹⁾	16	Α
	T _a = 45 °C; P13A/125	21	Α
	T _a = 45 °C; P1A/120	34	Α
I _{TSM} , I _{FSM}	T _{vi} = 25 °C; 10 ms	470	Α
	T _{vi} = 125 °C; 10 ms	400	Α
i²t	$T_{vj} = 25 ^{\circ}\text{C}; 8,3 \dots 10 \text{ms}$	1100	A²s
	$T_{vj} = 125 ^{\circ}\text{C}; 8,3 \dots 10 \text{ms}$	800	A²s
V_{T}	T _{vi} = 25 °C; I _T =75 A	max. 2,3	V
$V_{T(TO)}$	T _{vi} = 125 °C;	1	V
r _T	$T_{vj} = 125 ^{\circ}\text{C}$	16	$m\Omega$
I _{DD} ; I _{RD}	$T_{vj} = 125 \text{ °C}; V_{DD} = V_{DRM}; V_{RD} = V_{RRM}$	max. 10	mA
t _{gd}	$T_{vj} = 25 \text{ °C}; I_G = 1 \text{ A}; di_G/dt = 1 \text{ A/}\mu\text{s}$	1	μs
t _{gr}	$V_D = 0.67 \cdot V_{DRM}$	1	μs
(dv/dt) _{cr}	T _{vi} = 125 °C	max. 500	V/µs
(di/dt) _{cr}	$T_{vi} = 125 ^{\circ}\text{C}; f = 50 \text{Hz}$	max. 50	A/µs
t_q	$T_{vj} = 125 ^{\circ}\text{C}; \text{ typ.}$	80	μs
I _H	$T_{vj} = 25 ^{\circ}\text{C}$; typ. / max.	100 / 200	mA
I_{L}	T_{vj} = 25 °C; R_G = 33 Ω	250 / 400	mA
V _{GT}	T _{vi} = 25 °C; d.c.	min. 3	V
I_{GT}	$T_{vj} = 25 ^{\circ}\text{C}; \text{d.c.}$	min. 150	mA
V_{GD}	$T_{vj} = 125 ^{\circ}\text{C}; \text{d.c.}$	max. 0,25	V
I_{GD}	$T_{vj} = 125 ^{\circ}\text{C}; \text{d.c.}$	max. 5	mA
R _{th(j-c)}	per thyristor / diode	1	K/W
3 37	total	0,167	K/W
$R_{th(c-s)}$	total	0,05	K/W
T _{vi}		- 40 + 125	°C
T _{stg}		- 40 + 125	°C
V _{isol}	a. c. 50 Hz; r.m.s.; 1 s / 1 min.	3600 (3000)	V
M _s	to heatsink	5	Nm
M _t	to terminals	3	Nm
m		165	g
Case	SKDT	G 21	









This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.