IGBT-IPM R series

600V/30A/6 in one-package

Features

 \cdot Low power loss and soft switching

• High performance and high reliability IGBT with overheating protection

• Higher reliability because of big decrease in number of parts in built-in control circuit

Applications

- · Inverter for motor drive
- · AC and DC servo drive amplifier
- · UPS(Uninterruptible power supply)

Maximum ratings and characteristics

 \cdot Absolute maximum ratings (T_c=25 unless otherwise specified)

Items	Symbol	Ratings	Unit	
DC bus voltage		V _{DC}	450	V
DC bus voltage (surge)		V _{DC(surge)}	500	V
DC bus voltage (short operating)		V _{SC}	400	V
Collector-Emitter voltage		V _{CES}	600	V
Collector current	DC	I _C	30	А
	1 ms	I _{CP}	60	А
	Duty=56.6%	-I _C	30	А
Collector power dissipation One Transistor		Pc	85	W
Junction temperature	Tj	150		
Input voltage of power supply for pre-driver		V _{cc}	-0.3~20	V
Input signal current		l _{in}	20	mA
Alarm signal voltage		V _{ALM}	Vcc	V
Alarm signal current		I _{ALM}	15	mA
Storage temperature		T _{stg}	-40~125	
Operating case temperature		T _{cop}	-20~100	
Isolating voltage (Terminal to base,50/60Hz sine wave 1min)		V _{iso}	AC 2500	V
Screw torque		Mounting(M4)	2.0	N?m

Electrical Characteristics

 \cdot Electrical characteristics of power circuit (Tc=Tj=25 $\,$, Vcc=15V)

Items	Symbol	Condition	Min.	Тур.	Max.	Unit
Collector current at off signal input	I _{CES}	V _{CE} =600V I _{in} =0mA	-	-	1.0	mA
Collector-Emitter saturation voltage	V _{CE(sat)}	I _C =30A	-	-	2.7	V
Forward voltage of FWD	V _F	-I _C =30A	-	-	3.5	V

6MBP30RY060

· Electrical characteristics of control circuit (Tc=Tj=2	25 , Vcc=15V)
--	---------------

Items	Symbol	Condition	Min.	Тур.	Max.	Unit
Power supply current of P-line pre-driver	I _{CCP}	lin=0mA	-	2.0	5.0	mA
(one unit)						
Power Supply Current of N-line pre-driver	I _{CCN}	lin=0mA	-	4.0	10.0	mA
Input signal threshold current	l _{in(th)}	Turn-on	-	1.8	2.3	mA
		Turn-off	0.8	1.3	-	mA
Hysteresis of input signal theshold current	l _{inH}	-	-	0.5	-	mA
Input signal saturation voltage	V _{in(sat)}	lin=20mA	-	0.8	2.0	mA
Over heating protection						
IGBT chips overheat protection	Т _{јОН}	Surface of IGBT	150	-		
temrerature level						
Hysteresis	l _{jH}	-	-	20	-	
Collector current protection level	I _{oc}	N-side only	31	36	-	А
	V _{oc}	Between N1 and N2	190	200	210	mA
OC detecting resistor value	R _{oc}		-	5.5	-	m
Protection delay time	t _{DOC}	T _j =25 Fig.1 Fig.2	-	5.0	7.0	μs
Under voltage protection level	V _{UV}	-	11.0	-	12.5	V
Hysteresis	V _H	-	0.2	-	0.8	V
Alarm signal hold time	t _{ALM}	-	1.0	2.0	-	ms

Switching characteristics (Tc=Tj=25 , Vcc=15V)

Items	Symbol	Condition	Min.	Тур.	Max.	Unit
Switching time(IGBT)	t _{on}	Ic=30A, V _{DC} =300V	0.5	-	-	μs
	t _{off}	lin=10mA	-	-	5.0	μs
Switching time(FWD)	t _{rr}	Inductive-Load. Fig.3	-	-	0.5	μs

lc

IALM

Fig.1 Definition of switching

Fig.3 Definition of switching time

Fig.2 Definition of tsc

6MBP30RY060

· Thermal characteristics

Item		Symbol	Min.	Тур.	Max.	Unit
Junction to case thermal resistance	IGBT	R _{th(j-c)}	-	-	1.47	/W
	FWD	R _{th(j-c)}	-	-	2.1	/W
Case to fin thermal resistance with compound		R _{th(c-f)}	-	0.05	-	/W

· Recommendable value

Items	Symbol	Condition	Min.	Тур.	Max.	Unit
DC bus voltage	V _{DC}	-	200	-	400	V
Operating power supply voltage	V _{CC}	-	13.5	15	16.5	V
Range of pre-drive						
Input signal current	l _{in(on)}	CTR= 100~200%	8	-	10	mA
Switching frequency	f _{sw}	-	1	3	5	kHz
Flatness of heat sink		-	-100	-	100	μm
Mounting screw torque (M4)		-	1.3	-	1.7	N · m

Pre-driver 1 includes following functions. (P-side)

- (1) Amplifier for drive
- (2) Power supply under voltage protection
- (3) IGBT chip over heating protection

Pre-driver 1 includes following functions. (N-side)

- (1) Amplifier for drive
- (2) Power supply under voltage protection
- (3) IGBT chip over heating protection
- (4) Over current protection
- (5) Alarm signal output

· Typical application circuit

CTR classification	Input forward current of
	opto-coupler
100-200%	8-10mA
80-160%	10-12.5mA

· Application guideline

- The wiring between the opto-couplers and the input terminals of the IPM should be as short as possible. The stray capacitance between primary and secondary side of the opto-couplers should not be increased by pattern lay-out of the control circuits.

- Capacitors should be connected between Vcc and GND terminals of the opto-coupler as closely as possible.

- Each power supplies for drive circuits should not have transient voltage fluctuation. Four power supplies which are isolated should be applied individually.

- In order to prevent noise from AC line, connect capacitor (approx. 4.7nF) between three-phase line and earth.

- Do not connect N2-terminal of main circuit to ground (GND) of the control circuit.

· Heat sink mounting precautions

- A mounting surface of a heat sink should be finished to a roughness below $10 \,\mu$ m and a flatness between screw holes below $100 \,\mu$ m. If the flatness is below $-100 \,\mu$ m, a thermal resistance between an IPM and a heat sink is increased. If the flatness is over $+100 \,\mu$ m, there is the danger of the isolation failure.

- Apply a thermal compound between an IPM and a heat sink to reduce a contact thermal resistance.

- Mount a IPM in para1lel with extruded direction

of a heat sink to reduce an influence of a change of a heat sink, when a heat sink which is made by a extruder is applied.

Storage and transportation notes

- The IGBT-IPM should be stored at a standard temperature of 5 to 35 and humidity of 45 to 75%.

- Store modules in a place with few temperature changes in order to avoid condensation on the module surface.

- Avoid exposure to corrosive gases and dust.
- Avoid excessive external force on the modules.
- Store modules with unprocessed terminals.
- Don't drop and shock the modu1es during transportation.
- · Operation environment
 - Avoid exposure to corrosive gases.
- App1icable category
- This specification (tentative) is applied to the IGBT-IPM named 6MBP30RY060.

