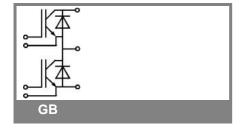


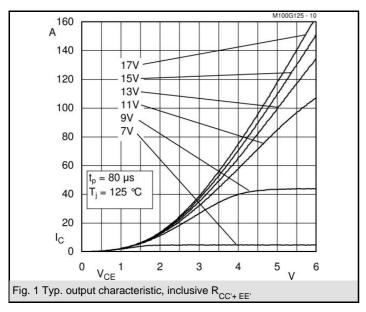
SEMITRANSTM 2N

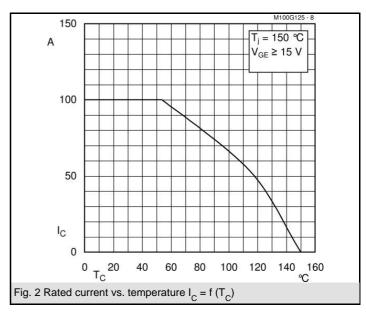
Ultra Fast IGBT Module

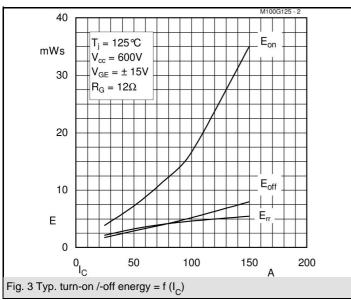
SKM 100GB125DN

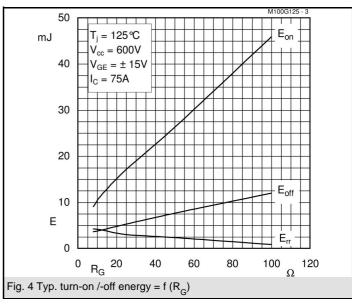
Features

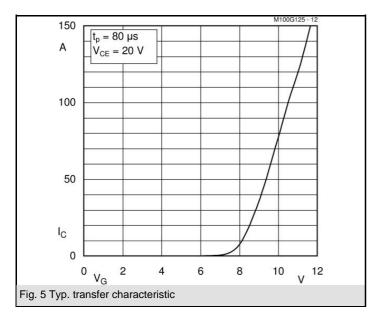

- N channel, homogeneous Si
- · Low inductance case
- . Short tail current with low temperature dependence
- · High short circuit capability, self limiting to 6 x I_{cnom}
 • Fast & soft inverse CAL diodes
- · Isolated copper baseplate using DCB Direct Copper Bonding Technology
- Large clearance (10 mm) and creepage distances (20 mm)

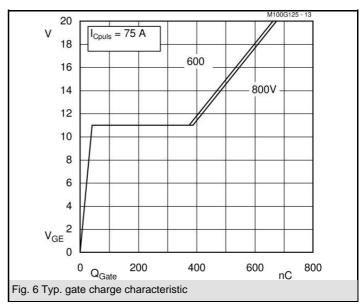

Typical Applications

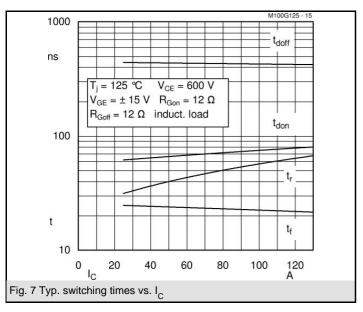

- Switched mode power supplies at $f_{sw} > 20 \text{ kHz}$
- Resonant inverters up to 100 kHz
- Inductive heating
- Electronic welders at f_{sw} > 20 kHz

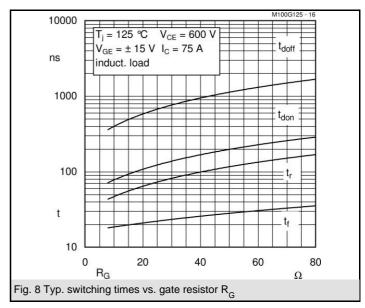

Absolute	Maximum Ratings	T _c = 25 °C, unless otherwise	c = 25 °C, unless otherwise specified					
Symbol	Conditions	Values	Units					
IGBT								
V_{CES}		1200	V					
I _C	$T_c = 25 (85) ^{\circ}C$ $t_p = 1 \text{ ms}$	100 (80)	Α					
I _{CRM}	t _p = 1 ms	150	Α					
V _{GES}		± 20	V					
T_{vj} , (T_{stg})	$T_{OPERATION} \leq T_{stg}$	- 40 + 150 (125)	°C					
V _{isol}	AC, 1 min.	4000	V					
Inverse diode								
I _F	T _c = 25 (80) °C	95 (65)	Α					
I _{FRM}	$t_p = 1 \text{ ms}$	150	Α					
I_{FSM}	$t_p = 10 \text{ ms; sin.; } T_j = 150 \text{ °C}$	720	Α					

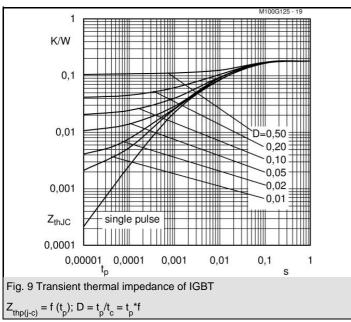

Characte	ristics	c = 25 °C, unless otherwise specified			
Symbol	Conditions	min.	typ.	max.	Units
IGBT	Conditions	1111111	typ.	IIIUA.	Oilits
V _{GE(th)}	$V_{GF} = V_{CF}$, $I_C = 2 \text{ mA}$	4,5	5,5	6,5	Ιv
GE(th)	$V_{GE} = V_{CE}, I_C = 2 \text{ IIIA}$ $V_{GE} = 0, V_{CE} = V_{CES}, T_i = 25 (125) ^{\circ}\text{C}$	7,5	0,15	0,45	mA
V _{CE(TO)}	$T_i = 25 (125) ^{\circ}C$		0,10	0, 10	V
r _{CE}	V _{GF} = 15 V, T _i = 25 (125) °C				mΩ
V _{CE(sat)}	$I_{Cnom} = 75 \text{ A}, V_{GE} = 15 \text{ V}, \text{ chip level}$		3,3	3,85	V
C _{ies}	under following conditions		5	6,6	nF
C _{oes}	V _{GF} = 0, V _{CF} = 25 V, f = 1 MHz		0,72	0,9	nF
C _{res}	GE GE		0,38	0,5	nF
L _{CE}				25	nΗ
R _{CC'+EE'}	res., terminal-chip T _c = °C				mΩ
t _{d(on)}	V _{CC} = 600 V, I _{Cnom} = 75 A		80		ns
t _r `´	$R_{Gon} = R_{Goff} = 8 \Omega, T_{j} = 125 ^{\circ}C$		40		ns
$t_{d(off)}$	V _{GE} = ± 15 V		360		ns
t _f			20		ns
$E_{on} (E_{off})$			9 (3,5)		mJ
Inverse d	iode				
$V_F = V_{EC}$	I_{Fnom} = 75 A; V_{GE} = 0 V; T_{i} = 25 (125) °C		2 (1,8)	2,5	V
$V_{(TO)}$	T _j = 25 (125) °C		1,1	1,2	V
r_T	$T_{j} = 25 (125) ^{\circ}C$		12	17,3	mΩ
I _{RRM}	$I_{Fnom} = 75 \text{ A}; T_j = 125 \text{ () } ^{\circ}\text{C}$		50		Α
Q_{rr}	di/dt = 800 A/μs		11,5		μC
E _{rr}	$V_{GE} = 0 V$		4		mJ
Thermal of	characteristics				
$R_{th(j-c)}$	per IGBT			0,18	K/W
R _{th(j-c)D}	per Inverse Diode			0,5	K/W
R _{th(c-s)}	per module			0,05	K/W
Mechanic	al data				
M_s	to heatsink M6	3		5	Nm
M_t	to terminals M5	2,5		5	Nm
W				160	g

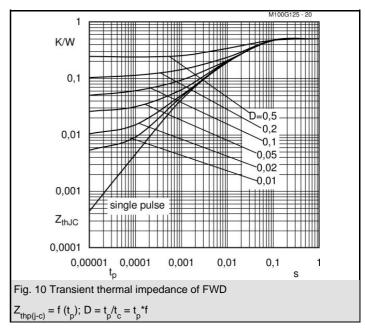


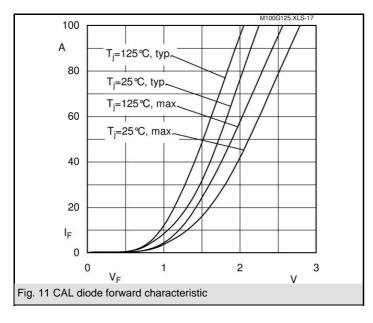


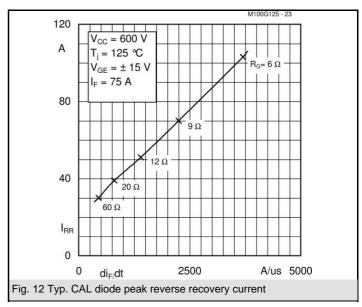


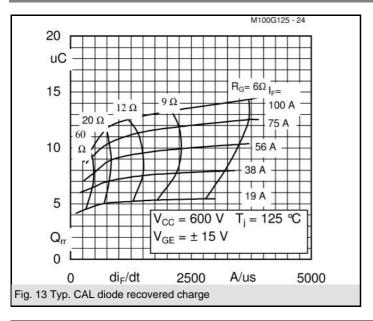


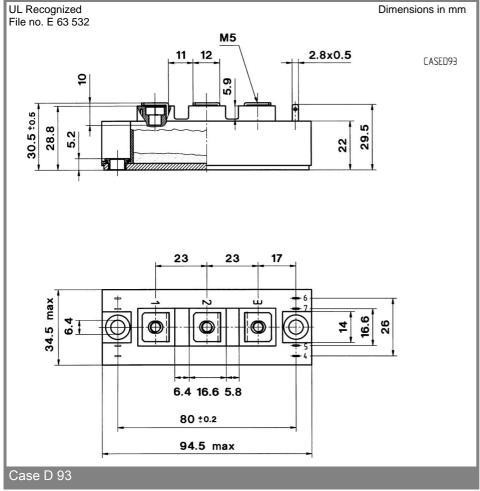


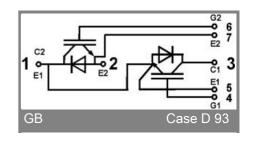












This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.