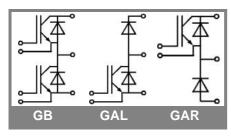


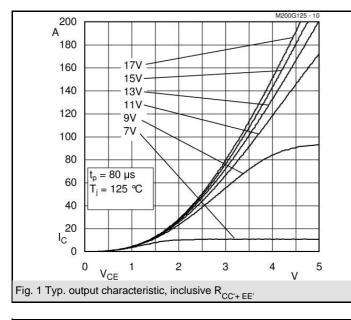
SEMITRANSTM 3

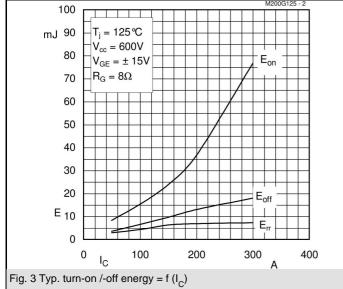
Ultra Fast IGBT Modules

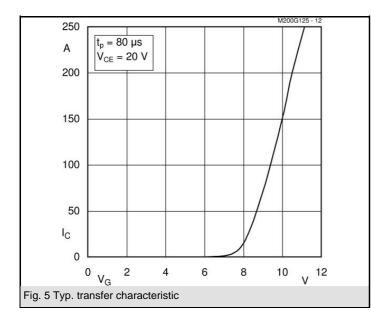

SKM 200GB125D **SKM 200GAL125D SKM 200GAR125D**

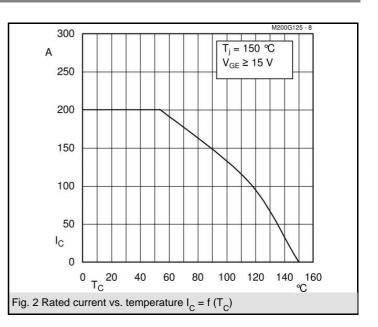
Features

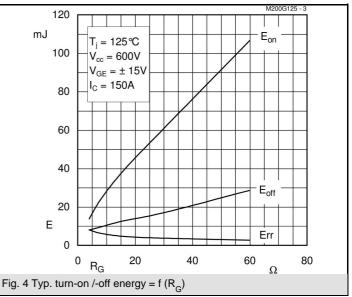
- N channel , homogeneous Si
- Low inductance case
- Short tail current with low temperature dependence
- High short circuit capability, self limiting to 6 x I_{cnom} • Fast & soft inverse CAL diodes
- Isolated copper baseplate using DCB Direct Copper Bonding Technology
- Large clearance (13 mm) and creepage distance (20 mm)

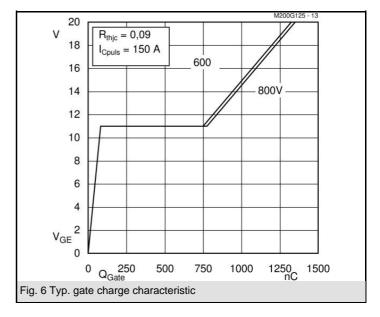

Typical Applications

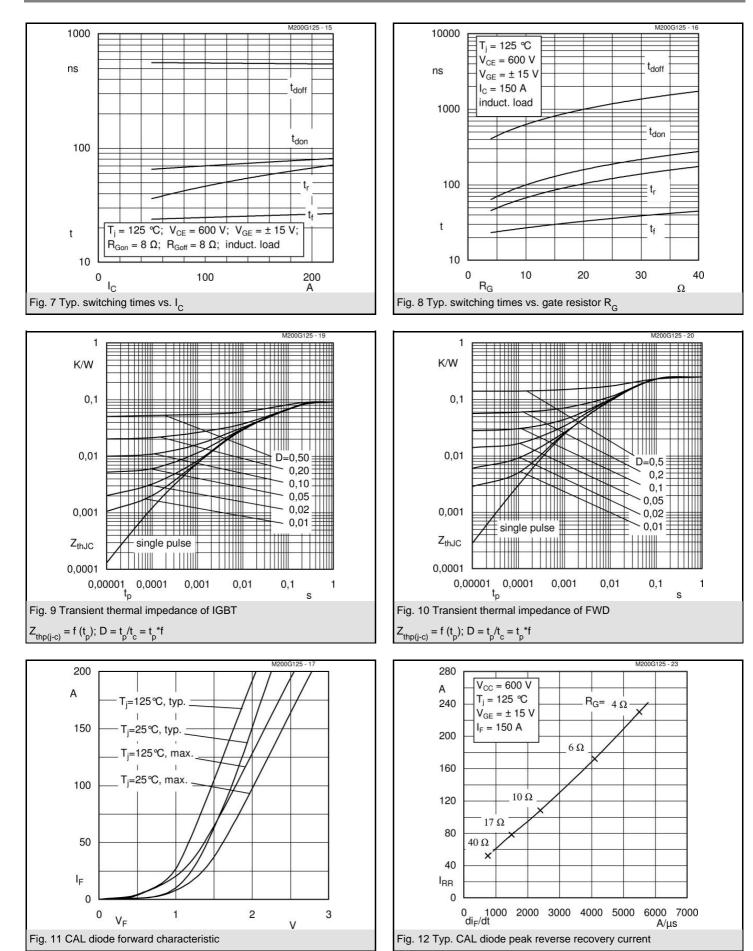

- Switched mode power supplies at $f_{sw} > 20 \text{ kHz}$
- Resonant inverters up to 100 kHz
- Inductive heating
- Electronic welders at f_{sw} > 20 kHz

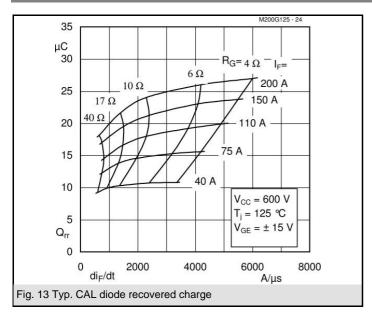


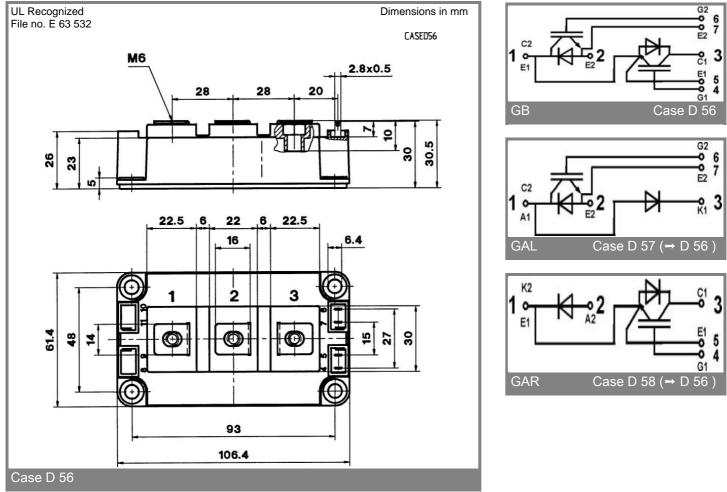

1	Absolute	T_c = 25 °C, unless otherwise s	s otherwise specified					
L	Symbol	Conditions	Values	Units				
	IGBT							
	V _{CES}		1200	V				
	I _C	T _c = 25 (80) °C	200 (160)	А				
	I _{CRM}	t _p = 1 ms	300	А				
	V _{GES}		± 20	V				
	T _{vj} , (T _{stg})	$T_{OPERATION} \leq T_{stg}$	- 40 + 150 (125)	°C				
	V _{isol}	AC, 1 min.	4000	V				
	Inverse diode							
	I _F	T _c = 25 (80) °C	200 (130)	А				
	I _{FRM}	t _p = 1 ms	300	А				
	I _{FSM}	t _p = 10 ms; sin.; T _j = 150 °C	1450	А				
Freewheeling diode								
	I _F	T _c = 25 (80) °C	200 (130)	А				
	I _{FRM}	t _p = 1 ms	300	А				
	I _{FSM}	t _p = 10 ms; ; T _j = 150 °C	1450	А				


Characte	ristics	$T_c = 25 \text{ °C}$, unless otherwise specified				
Symbol	Conditions	min.	typ.	max.	Units	
IGBT						
V _{GE(th)}	$V_{GE} = V_{CE}$, $I_C = 6 \text{ mA}$	4,5	5,5	6,5	V	
I _{CES}	$V_{GE} = 0, V_{CE} = V_{CES}, T_{j} = 25 (125) \ ^{\circ}C$		0,15	0,45	mA	
V _{CE(TO)}	T _j = 25 (125) °C		1,5	1,75	V	
r _{CE}	V _{GE} = 15 V, T _j = 25 (125) °C		12	14	mΩ	
V _{CE(sat)}	I_{Cnom} = 150 A, V_{GE} = 15 V, chip level		3,3	3,85	V	
C _{ies}	under following conditions		10	13	nF	
C _{oes}	V _{GE} = 0, V _{CE} = 25 V, f = 1 MHz		1,5	2	nF	
C _{res}			0,8	1,2	nF	
L _{CE}			/	20	nH	
R _{CC'+EE'}	res., terminal-chip T _c = 25 (125) °C		0,35 (0,5)		mΩ	
t _{d(on)}	$V_{CC} = 600 \text{ V}, \text{ I}_{Cnom} = 150 \text{ A}$		75		ns	
t,	$R_{Gon} = R_{Goff} = 4 \Omega, T_j = 125 °C$		36		ns	
t _{d(off)}	V _{GE} = ± 15 V		420		ns	
t _f			25		ns	
$E_{on} \left(E_{off} \right)$			14 (8)		mJ	
Inverse d	<u>.</u>					
$V_F = V_{EC}$	I _{Enom} = 150 A; V _{GE} = 0 V; T _j = 25 (125)		2 (1,8)	2,5	V	
V _(TO)	T _i = 25 (125) °C		1,1	1,2	V	
r _T	T _j = 25 (125) °C		6	8,7	mΩ	
I _{RRM}	I _{Fnom} = 150 A; T _j = 125 () °C		230		Α	
Q _{rr}	di/dt = 5500 A/µs		24		μC	
E _{rr}	$V_{GE} = 0 V$		6,3		mJ	
FWD						
$V_F = V_{EC}$	I _F = 150 A; V _{GE} = 0 V, T _j = 25 (125) °C		2 (1,8)	2,5	V	
V _(TO)	T _j = 25 (125) °C		1,1	1,2	V	
r _T	$T_j = 25 (125) °C$		6	8,7	mΩ	
I _{RRM}	$I_{\rm F} = 150 \text{ A}; T_{\rm j} = 125 \text{ () }^{\circ}\text{C}$		230		A	
Q _{rr}	di/dt = 5500 A/µs		24		μC	
E _{rr}	V _{GE} = 0 V		6,3		mJ	
	characteristics					
R _{th(j-c)}	per IGBT			0,09	K/W	
R _{th(j-c)D}	per Inverse Diode			0,25	K/W	
R _{th(j-c)FD}	per FWD			0,25	K/W	
R _{th(c-s)}	per module			0,038	K/W	
Mechanical data						
M _s	to heatsink M6	3		5	Nm	
M _t	to terminals M6	2,5		5	Nm	
w				325	g	









This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.